QUESTIONSHEET 1

(a)

$\begin{array}{lll}\text { (b) condensation; } & \mathrm{H}_{2} \mathrm{O} ; & 1\end{array}$
(c) hydrolysis/digestion;
(d) liver/muscles;
(e) mix equal volumes of solution and dilute hydrochloric acid;
boil in a water bath (for 2 minutes) to hydrolyse sucrose (to glucose and fructose); mix with equal volumes of Benedict's reagent;
boil in water bath (for 2 minutes);
if brick red precipitate appears then sucrose is present;
mix equal volumes of solution and (dilute $/ 5 \%$) sodium hydroxide;
run dilute $/ 1 \%$ copper sulphate solution into the solution;
a purple ring at the interface indicates protein is present;

QUESTIONSHEET 2

(a) isomers;
(b) the position of -H and -OH groups on first carbon atom;
(c) leads to greater chemical variety/biochemical division of labour; alpha glucose/starch is respiratory; whereas beta glucose/cellulose is structural;
(d) glycosidic/condensation links;

QUESTIONSHEET 3

(a) (i) saturated means that the molecule contains the maximum number of hydrogen atoms; unsaturated means that the molecule contains fewer hydrogen atoms than it might/contains double bonds;
(ii) unsaturated fats have lower melting points than saturated fats; unsaturated fats form oils but saturated fats are solid;
(b) Any four of:
don't dissolve in water/body fluids/ therefore don't affect osmotic balance of cells/tissues/ have higher calorific value than carbohydrates/ can yield more energy per gramme on oxidation/ reference to other useful properties/buoyancy/insulation;;;;
(c) (i)

1 mark for labelling the glycerol part of the molecule; 1 mark for labelling the fatty acids; 1 mark for labelling the bond;
(ii) one fatty acid molecule would be replaced by phosphoric acid/phosphate;

QUESTIONSHEET 4

(a) fatty acids joined to;
glycerol;
phosphate also attached;
reference to alcohol/choline attached to phosphate;
(credit points on a diagram)
$\max 3$
(b) (i)
(fatty acid) side chain
Correct drawing;
Correct labels;
 polar head

Cor
(ii) polar heads mix with water, non polar tails do not; thus heads face water on both sides with tails to middle;
(c) Any 2 of: waterproofing/protection qualified/cell membrane structure/insulation/give buoyancy;;
(d) Either emulsion test - take sample and add equal volume of ethanol and an equal volume of cold water; mix and if positive a white emulsion forms;
or Sudan III test - add a few drops of Sudan III to sample; red fat droplets appear if positive;

QUESTIONSHEET 5

(a)

(b) (i) rest of the molecule/side chain;
(ii) hydrogen/methyl group/any correct group;
(iii) peptide;
(c) their molecules contain both acidic and basic groups;

QUESTIONSHEET 6

(a) secondary protein structure/beta-pleated sheet;
(b) many hydrogen bonds between polypeptide chains;
(c) polypeptide chain;
bends/folds extensively;
into a compact/globular structure;
(d) Any two of:
ionic/
hydrogen/
disulphide bridges;; (reject 'peptide' since these hold the primary structure together)
(e) haemoglobin/myoglobin/antibodies;
(f) add equal volume of (dilute/5\%) potassium hydroxide solution to test solution; (down side of test tube) add a few drops of (1%) copper sulphate solution; presence of a purple ring at interface;
which dissolves to form a purple solution on shaking, indicates protein;

QUESTIONSHEET 7

(a) A - phosphate;

B - pentose/ribose/deoxyribose; (not. sugar).
C - nitrogenous base/pyrimidine/purine;
D- nucleotide;
(b) (i) bases that will join together;
by hydrogen bonds;
A to T and G to C ;
(ii) RNA has uracil instead of thymine;

RNA has ribose sugar instead of deoxyribose;
RNA is single stranded instead of double stranded;

QUESTIONSHEET 8

(a)

	monosaccharide	disaccharide	polysaccharide
ribose	\checkmark	χ	χ
glucose	\checkmark	x	x
maltose	χ	\checkmark	x
starch	x	x	\checkmark
lactose	x	\checkmark	$x \quad ;$
glycogen	x	x	\checkmark
cellulose	x	x	\checkmark

(b) starch contains α-glucose, cellulose contains β-glucose;
starch linked by α-glycosidic links, cellulose by β-glycosidic links;
starch may contain branched chains, cellulose is unbranched;
$\max 2$
TOTAL 9

QUESTIONSHEET 9

(a) (i) $\mathrm{S}=$ deoxyribose; $\mathrm{P}=$ phosphate; $\mathrm{G}=$ guanine; $\mathrm{C}=$ cytosine; $\mathrm{T}=$ thymine; $\mathrm{A}=$ adenine;
(ii) G-C: hydrogen;

S-S: phosphate bridge/bond;
(b) (i) supply energy;
for all energy-requiring reactions/synthesis/anabolism;
(ii) co-enzyme;
hydrogen acceptor in respiration;
(iii) responsible for transfer of acetyl units; from glycolysis to Krebs cycle;

QUESTIONSHEET 10

(a) disaccharide/maltose;
(b) 1,4-glycosidic/alpha link;
(c) condensation;
(d) respiration/energy substrate;
(e) (i)

(ii) (1, 4-)glycosidic beta link;

QUESTIONSHEET 11

(a) protein;
(b) Any three of:
mix together equal volumes of solution and Benedicts reagent/ boil in a waterbath for (2 minutes)/
presence of brick red precipitate indicates glucose;;;
(c) use same volumes of test and standard solutions;
add same volume of glucose oxidase solution to each;
incubate for a standard/stated time at a suitable/stated temperature;
add same volume of peroxide and indicator;
read intensity of colour in photometer;
calculate answer using formula $\frac{\text { Concentration of test }}{\text { Concentration of standard }}=\frac{\text { Reading of Test }}{\text { Reading of Standard }}$;

QUESTIONSHEET 12

(a) A - (beta)-glucose;

B - $(1,4)$ glycosidic beta link;
(b) condensation/removal of water;
(c) main component plant cell walls;
d)

	SUBSTANCE		
	Starch	Protein	DNA
Only contains C, H, and O	\checkmark	\boldsymbol{x}	\boldsymbol{x}
Contains nitrogen	\boldsymbol{x}	\checkmark	\checkmark
Positive when boiled with Benedicts reagent	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}
Hydrolysed to smaller units during digestion	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$
Contains uracil ;	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}

QUESTIONSHEET 13

(a) A \& B;
(b) (hydrophobic) tails;
of phospholipid molecules;
(c) (i) glycocalyx;
(ii) polysaccharide/glycoprotein/carbohydrate;
(ii) any two of: aids cell recognition/cell adherence/receptor sites for hormones/antibodies;;
(i) glycocalyx;

QUESTIONSHEET 14

(a) X - nucleic acid/DNA/RNA/ATP/nucleotide;

Y - protein/amino acid/polypeptide;
Z- cellulose/hemicellulose;
(b) amylose; amylopectin;
amylose is an unbranched chain but amylopectin is branched;
(c) (i) forms covalent/sulphur bonds;
holding adjacent polypeptides together/contributes to secondary/tertiary structure;
(ii) increases protein's stability to pH change;
increases protein's stability to temperature change;
(allow 1 mark if just refer to 'strong bonding')

QUESTIONSHEET 15

(a) X - phospholipid;

Y - extrinsic/external/surface protein;

Z - intrinsic/integral/internal protein;
(b) Y - cell recognition/support glycocalyx/has receptor groups;

Z - facilitated diffusion/active transport;

| (c) |
| :--- | | | Phospholipid | Protein | Carbohydrate |
| :--- | :---: | :---: | :---: |
| Act as enzymes | \boldsymbol{x} | \checkmark | \boldsymbol{x} |
| Allows passage of
 water soluble substances | \boldsymbol{x} | \checkmark | \boldsymbol{x} |
| Involved in cell recognition | \boldsymbol{x} | \checkmark | \checkmark |

TOTAL 8

QUESTIONSHEET 16

(a) A: phosphate;

B: glycerol;
(b) circle round

(c) Precursors for prostaglandins/hormones/other fatty acids/essential for growth/provide energy/ATP synthesis;
(d) (i) vitamin A:
night blindness/hyperkeratosis/xerophthalmia;
failure to synthesise retinol/rhodopsin/drying/hardening/fracturing of epithelial tissues;
(ii) vitamin D :
rickets in children/osteomalacia in adults;
failure to regulate calcium/phosphate metabolism/absorption/mobilisation from bone/bent long bones/bow legs/ broken bones in adults;

QUESTIONSHEET 17

a) (i) α helix/secondary structure/fibrous structure;
(ii) Any three of:
hydrogen bonds/ionic bonds/sulphur bonds/peptide bonds;;;
(b) (i) tertiary structure/globular structure;
(ii) quaternary structure;
(c) consists of 4 polypeptide chains/ 2α chains and 2β chains;
tightly folded globular structure/compact;
to fit in red blood cells;
each chain contains a haem group which contains iron;
each haem group can reversibly bind with an oxygen molecule;
$\max 4$
TOTAL 10

QUESTIONSHEET 18

(a) alpha-;
glycosidic;
(b) liver/muscles;
(c) many ends/exposed/terminal glucose units;
allows rapid release of glucose/rapid digestion of molecule/rapid mobilisation in respiration; make molecule compact so much can be stored in a small space;
(d) glucoses linked by beta-glycosidic links; molecules are unbranched;

QUESTIONSHEET 19

Macromolecule	
RNA/DNA/nucleotides;	
	amino acids;
	glycerol;
	alpha-glucose;
	beta-glucose;

(b) sequence of amino acids; governs distribution of bonding regions; which influence the position of hydrogen bonds/ionic bonds/disulphide bridges;

QUESTIONSHEET 20

deoxyribose/pentose; nitrogenous; hydrogen; cytosine; adenine; complementary; purine; thymine/cytosine; double helix; ten;
TOTAL 10

QUESTIONSHEET 21

TOTAL 12

